Benchmark Report

Configuration

Length of signals: 1024

Repetitions: 100

SNRin values: -5, 0, 10, 20,

Methods

  • brevdo_method

  • contour_filtering

  • delaunay_triangulation

  • empty_space

  • thresholding_garrote

  • thresholding_hard

  • pseudo_bayesian_method

  • sz_classification

Signals

  • McMultiLinear

  • McMultiLinear2

  • McSyntheticMixture

  • McSyntheticMixture2

  • McSyntheticMixture3

  • HermiteFunction

Mean results tables:

Results shown here are the mean and standard deviation of the performance metric. Best performances are bolded.

Signal: McMultiLinear[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

brevdo_method

0.49

0.05

0.76

0.03

0.97

0.00

1.00

0.00

1

contour_filtering

0.30

0.05

0.60

0.06

0.98

0.00

1.00

0.00

2

delaunay_triangulation

0.43

0.08

0.74

0.07

0.98

0.00

1.00

0.00

3

empty_space

0.47

0.08

0.75

0.06

0.98

0.00

1.00

0.00

4

thresholding_garrote

0.58

0.03

0.86

0.01

0.99

0.00

1.00

0.00

5

thresholding_hard

0.17

0.06

0.53

0.04

0.99

0.00

1.00

0.00

6

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

0.52

0.05

0.82

0.05

0.98

0.01

1.00

0.00

7

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

0.52

0.03

0.82

0.02

0.98

0.00

1.00

0.00

8

sz_classification

0.51

0.06

0.83

0.02

0.98

0.00

1.00

0.00

Signal: McMultiLinear2[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

brevdo_method

0.50

0.04

0.76

0.03

0.98

0.00

1.00

0.00

1

contour_filtering

0.28

0.04

0.40

0.03

0.66

0.02

0.72

0.01

2

delaunay_triangulation

0.39

0.07

0.70

0.09

0.90

0.02

0.88

0.00

3

empty_space

0.44

0.06

0.71

0.07

0.91

0.01

0.89

0.00

4

thresholding_garrote

0.54

0.04

0.83

0.01

0.98

0.00

1.00

0.00

5

thresholding_hard

0.11

0.07

0.38

0.05

0.98

0.00

1.00

0.00

6

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

0.49

0.04

0.77

0.04

0.97

0.02

1.00

0.00

7

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

0.48

0.03

0.75

0.02

0.98

0.00

1.00

0.00

8

sz_classification

0.48

0.08

0.81

0.03

0.98

0.00

1.00

0.00

Signal: McSyntheticMixture[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

brevdo_method

0.49

0.06

0.75

0.04

0.95

0.03

0.99

0.01

1

contour_filtering

0.32

0.06

0.63

0.06

0.94

0.01

0.96

0.01

2

delaunay_triangulation

0.39

0.08

0.67

0.08

0.94

0.02

0.95

0.01

3

empty_space

0.44

0.07

0.70

0.05

0.95

0.01

0.96

0.01

4

thresholding_garrote

0.59

0.03

0.86

0.01

0.99

0.00

1.00

0.00

5

thresholding_hard

0.22

0.06

0.60

0.04

0.99

0.00

1.00

0.00

6

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

0.53

0.06

0.79

0.05

0.97

0.02

0.99

0.00

7

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

0.56

0.04

0.84

0.02

0.98

0.00

1.00

0.00

8

sz_classification

0.54

0.08

0.83

0.03

0.99

0.00

1.00

0.00

Signal: McSyntheticMixture2[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

brevdo_method

0.55

0.04

0.78

0.02

0.97

0.00

1.00

0.00

1

contour_filtering

0.60

0.08

0.89

0.02

0.99

0.00

1.00

0.00

2

delaunay_triangulation

0.50

0.09

0.79

0.03

0.98

0.00

1.00

0.00

3

empty_space

0.53

0.07

0.80

0.03

0.98

0.00

1.00

0.00

4

thresholding_garrote

0.70

0.03

0.89

0.01

0.99

0.00

1.00

0.00

5

thresholding_hard

0.51

0.07

0.89

0.02

0.99

0.00

1.00

0.00

6

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

0.59

0.06

0.81

0.04

0.97

0.02

0.99

0.01

7

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

0.60

0.03

0.82

0.01

0.98

0.00

1.00

0.00

8

sz_classification

0.69

0.06

0.87

0.03

0.98

0.00

1.00

0.00

Signal: McSyntheticMixture3[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

brevdo_method

0.52

0.05

0.75

0.03

0.96

0.02

0.99

0.01

1

contour_filtering

0.63

0.08

0.90

0.03

0.99

0.00

1.00

0.00

2

delaunay_triangulation

0.50

0.08

0.79

0.03

0.98

0.00

1.00

0.00

3

empty_space

0.52

0.08

0.79

0.04

0.98

0.00

1.00

0.00

4

thresholding_garrote

0.70

0.03

0.90

0.01

0.99

0.00

1.00

0.00

5

thresholding_hard

0.53

0.07

0.89

0.02

0.99

0.00

1.00

0.00

6

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

0.59

0.05

0.81

0.03

0.97

0.01

0.99

0.00

7

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

0.58

0.04

0.81

0.01

0.98

0.00

1.00

0.00

8

sz_classification

0.69

0.05

0.87

0.04

0.98

0.00

1.00

0.00

Signal: HermiteFunction[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

brevdo_method

0.56

0.11

0.70

0.06

0.74

0.04

0.73

0.03

1

contour_filtering

0.65

0.07

0.75

0.04

0.80

0.01

0.81

0.01

2

delaunay_triangulation

0.57

0.10

0.85

0.05

0.99

0.00

1.00

0.00

3

empty_space

0.57

0.09

0.84

0.04

0.99

0.00

1.00

0.00

4

thresholding_garrote

0.76

0.03

0.91

0.01

0.99

0.00

1.00

0.00

5

thresholding_hard

0.88

0.05

0.98

0.00

1.00

0.00

1.00

0.00

6

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

0.33

0.27

0.46

0.30

0.65

0.25

0.77

0.01

7

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

0.15

0.25

0.14

0.27

0.04

0.17

0.00

0.00

8

sz_classification

0.77

0.09

0.91

0.04

0.99

0.00

1.00

0.00