# Benchmark Report ## Configuration Length of signals: 1024 Repetitions: 100 SNRin values: -5, 0, 10, 20, ### Methods * brevdo_method * contour_filtering * delaunay_triangulation * empty_space * thresholding_garrote * thresholding_hard * pseudo_bayesian_method * sz_classification ### Signals * McMultiLinear * McMultiLinear2 * McSyntheticMixture * McSyntheticMixture2 * McSyntheticMixture3 * HermiteFunction ## Mean results tables: Results shown here are the mean and standard deviation of the performance metric. Best performances are **bolded**. ### Signal: McMultiLinear[[View Plot]](https://jmiramont.github.io/benchmarks-detection-denoising/results/denoising_CC/plot_McMultiLinear.html) [[Get .csv]](https://jmiramont.github.io/benchmarks-detection-denoising/results/denoising_CC/results_McMultiLinear.csv) | | Method + Param | SNRin=-5dB (mean) | SNRin=-5dB (std) | SNRin=0dB (mean) | SNRin=0dB (std) | SNRin=10dB (mean) | SNRin=10dB (std) | SNRin=20dB (mean) | SNRin=20dB (std) | |---:|:-----------------------------------------------------------------|:--------------------|-------------------:|:-------------------|------------------:|:--------------------|-------------------:|:--------------------|-------------------:| | 0 | brevdo_method | 0.49 | 0.05 | 0.76 | 0.03 | 0.97 | 0.00 | 1.00 | 0.00 | | 1 | contour_filtering | 0.30 | 0.05 | 0.60 | 0.06 | 0.98 | 0.00 | 1.00 | 0.00 | | 2 | delaunay_triangulation | 0.43 | 0.08 | 0.74 | 0.07 | 0.98 | 0.00 | 1.00 | 0.00 | | 3 | empty_space | 0.47 | 0.08 | 0.75 | 0.06 | 0.98 | 0.00 | 1.00 | 0.00 | | 4 | thresholding_garrote | **0.58** | 0.03 | **0.86** | 0.01 | 0.99 | 0.00 | 1.00 | 0.00 | | 5 | thresholding_hard | 0.17 | 0.06 | 0.53 | 0.04 | **0.99** | 0.00 | **1.00** | 0.00 | | 6 | pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], []) | 0.52 | 0.05 | 0.82 | 0.05 | 0.98 | 0.01 | 1.00 | 0.00 | | 7 | pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], []) | 0.52 | 0.03 | 0.82 | 0.02 | 0.98 | 0.00 | 1.00 | 0.00 | | 8 | sz_classification | 0.51 | 0.06 | 0.83 | 0.02 | 0.98 | 0.00 | 1.00 | 0.00 | ### Signal: McMultiLinear2[[View Plot]](https://jmiramont.github.io/benchmarks-detection-denoising/results/denoising_CC/plot_McMultiLinear2.html) [[Get .csv]](https://jmiramont.github.io/benchmarks-detection-denoising/results/denoising_CC/results_McMultiLinear2.csv) | | Method + Param | SNRin=-5dB (mean) | SNRin=-5dB (std) | SNRin=0dB (mean) | SNRin=0dB (std) | SNRin=10dB (mean) | SNRin=10dB (std) | SNRin=20dB (mean) | SNRin=20dB (std) | |---:|:-----------------------------------------------------------------|:--------------------|-------------------:|:-------------------|------------------:|:--------------------|-------------------:|:--------------------|-------------------:| | 0 | brevdo_method | 0.50 | 0.04 | 0.76 | 0.03 | 0.98 | 0.00 | 1.00 | 0.00 | | 1 | contour_filtering | 0.28 | 0.04 | 0.40 | 0.03 | 0.66 | 0.02 | 0.72 | 0.01 | | 2 | delaunay_triangulation | 0.39 | 0.07 | 0.70 | 0.09 | 0.90 | 0.02 | 0.88 | 0.00 | | 3 | empty_space | 0.44 | 0.06 | 0.71 | 0.07 | 0.91 | 0.01 | 0.89 | 0.00 | | 4 | thresholding_garrote | **0.54** | 0.04 | **0.83** | 0.01 | **0.98** | 0.00 | 1.00 | 0.00 | | 5 | thresholding_hard | 0.11 | 0.07 | 0.38 | 0.05 | 0.98 | 0.00 | **1.00** | 0.00 | | 6 | pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], []) | 0.49 | 0.04 | 0.77 | 0.04 | 0.97 | 0.02 | 1.00 | 0.00 | | 7 | pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], []) | 0.48 | 0.03 | 0.75 | 0.02 | 0.98 | 0.00 | 1.00 | 0.00 | | 8 | sz_classification | 0.48 | 0.08 | 0.81 | 0.03 | 0.98 | 0.00 | 1.00 | 0.00 | ### Signal: McSyntheticMixture[[View Plot]](https://jmiramont.github.io/benchmarks-detection-denoising/results/denoising_CC/plot_McSyntheticMixture.html) [[Get .csv]](https://jmiramont.github.io/benchmarks-detection-denoising/results/denoising_CC/results_McSyntheticMixture.csv) | | Method + Param | SNRin=-5dB (mean) | SNRin=-5dB (std) | SNRin=0dB (mean) | SNRin=0dB (std) | SNRin=10dB (mean) | SNRin=10dB (std) | SNRin=20dB (mean) | SNRin=20dB (std) | |---:|:-----------------------------------------------------------------|:--------------------|-------------------:|:-------------------|------------------:|:--------------------|-------------------:|:--------------------|-------------------:| | 0 | brevdo_method | 0.49 | 0.06 | 0.75 | 0.04 | 0.95 | 0.03 | 0.99 | 0.01 | | 1 | contour_filtering | 0.32 | 0.06 | 0.63 | 0.06 | 0.94 | 0.01 | 0.96 | 0.01 | | 2 | delaunay_triangulation | 0.39 | 0.08 | 0.67 | 0.08 | 0.94 | 0.02 | 0.95 | 0.01 | | 3 | empty_space | 0.44 | 0.07 | 0.70 | 0.05 | 0.95 | 0.01 | 0.96 | 0.01 | | 4 | thresholding_garrote | **0.59** | 0.03 | **0.86** | 0.01 | 0.99 | 0.00 | 1.00 | 0.00 | | 5 | thresholding_hard | 0.22 | 0.06 | 0.60 | 0.04 | **0.99** | 0.00 | **1.00** | 0.00 | | 6 | pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], []) | 0.53 | 0.06 | 0.79 | 0.05 | 0.97 | 0.02 | 0.99 | 0.00 | | 7 | pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], []) | 0.56 | 0.04 | 0.84 | 0.02 | 0.98 | 0.00 | 1.00 | 0.00 | | 8 | sz_classification | 0.54 | 0.08 | 0.83 | 0.03 | 0.99 | 0.00 | 1.00 | 0.00 | ### Signal: McSyntheticMixture2[[View Plot]](https://jmiramont.github.io/benchmarks-detection-denoising/results/denoising_CC/plot_McSyntheticMixture2.html) [[Get .csv]](https://jmiramont.github.io/benchmarks-detection-denoising/results/denoising_CC/results_McSyntheticMixture2.csv) | | Method + Param | SNRin=-5dB (mean) | SNRin=-5dB (std) | SNRin=0dB (mean) | SNRin=0dB (std) | SNRin=10dB (mean) | SNRin=10dB (std) | SNRin=20dB (mean) | SNRin=20dB (std) | |---:|:-----------------------------------------------------------------|:--------------------|-------------------:|:-------------------|------------------:|:--------------------|-------------------:|:--------------------|-------------------:| | 0 | brevdo_method | 0.55 | 0.04 | 0.78 | 0.02 | 0.97 | 0.00 | 1.00 | 0.00 | | 1 | contour_filtering | 0.60 | 0.08 | 0.89 | 0.02 | 0.99 | 0.00 | 1.00 | 0.00 | | 2 | delaunay_triangulation | 0.50 | 0.09 | 0.79 | 0.03 | 0.98 | 0.00 | 1.00 | 0.00 | | 3 | empty_space | 0.53 | 0.07 | 0.80 | 0.03 | 0.98 | 0.00 | 1.00 | 0.00 | | 4 | thresholding_garrote | **0.70** | 0.03 | **0.89** | 0.01 | 0.99 | 0.00 | 1.00 | 0.00 | | 5 | thresholding_hard | 0.51 | 0.07 | 0.89 | 0.02 | **0.99** | 0.00 | **1.00** | 0.00 | | 6 | pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], []) | 0.59 | 0.06 | 0.81 | 0.04 | 0.97 | 0.02 | 0.99 | 0.01 | | 7 | pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], []) | 0.60 | 0.03 | 0.82 | 0.01 | 0.98 | 0.00 | 1.00 | 0.00 | | 8 | sz_classification | 0.69 | 0.06 | 0.87 | 0.03 | 0.98 | 0.00 | 1.00 | 0.00 | ### Signal: McSyntheticMixture3[[View Plot]](https://jmiramont.github.io/benchmarks-detection-denoising/results/denoising_CC/plot_McSyntheticMixture3.html) [[Get .csv]](https://jmiramont.github.io/benchmarks-detection-denoising/results/denoising_CC/results_McSyntheticMixture3.csv) | | Method + Param | SNRin=-5dB (mean) | SNRin=-5dB (std) | SNRin=0dB (mean) | SNRin=0dB (std) | SNRin=10dB (mean) | SNRin=10dB (std) | SNRin=20dB (mean) | SNRin=20dB (std) | |---:|:-----------------------------------------------------------------|:--------------------|-------------------:|:-------------------|------------------:|:--------------------|-------------------:|:--------------------|-------------------:| | 0 | brevdo_method | 0.52 | 0.05 | 0.75 | 0.03 | 0.96 | 0.02 | 0.99 | 0.01 | | 1 | contour_filtering | 0.63 | 0.08 | **0.90** | 0.03 | 0.99 | 0.00 | 1.00 | 0.00 | | 2 | delaunay_triangulation | 0.50 | 0.08 | 0.79 | 0.03 | 0.98 | 0.00 | 1.00 | 0.00 | | 3 | empty_space | 0.52 | 0.08 | 0.79 | 0.04 | 0.98 | 0.00 | 1.00 | 0.00 | | 4 | thresholding_garrote | **0.70** | 0.03 | 0.90 | 0.01 | 0.99 | 0.00 | 1.00 | 0.00 | | 5 | thresholding_hard | 0.53 | 0.07 | 0.89 | 0.02 | **0.99** | 0.00 | **1.00** | 0.00 | | 6 | pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], []) | 0.59 | 0.05 | 0.81 | 0.03 | 0.97 | 0.01 | 0.99 | 0.00 | | 7 | pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], []) | 0.58 | 0.04 | 0.81 | 0.01 | 0.98 | 0.00 | 1.00 | 0.00 | | 8 | sz_classification | 0.69 | 0.05 | 0.87 | 0.04 | 0.98 | 0.00 | 1.00 | 0.00 | ### Signal: HermiteFunction[[View Plot]](https://jmiramont.github.io/benchmarks-detection-denoising/results/denoising_CC/plot_HermiteFunction.html) [[Get .csv]](https://jmiramont.github.io/benchmarks-detection-denoising/results/denoising_CC/results_HermiteFunction.csv) | | Method + Param | SNRin=-5dB (mean) | SNRin=-5dB (std) | SNRin=0dB (mean) | SNRin=0dB (std) | SNRin=10dB (mean) | SNRin=10dB (std) | SNRin=20dB (mean) | SNRin=20dB (std) | |---:|:-----------------------------------------------------------------|:--------------------|-------------------:|:-------------------|------------------:|:--------------------|-------------------:|:--------------------|-------------------:| | 0 | brevdo_method | 0.56 | 0.11 | 0.70 | 0.06 | 0.74 | 0.04 | 0.73 | 0.03 | | 1 | contour_filtering | 0.65 | 0.07 | 0.75 | 0.04 | 0.80 | 0.01 | 0.81 | 0.01 | | 2 | delaunay_triangulation | 0.57 | 0.10 | 0.85 | 0.05 | 0.99 | 0.00 | 1.00 | 0.00 | | 3 | empty_space | 0.57 | 0.09 | 0.84 | 0.04 | 0.99 | 0.00 | 1.00 | 0.00 | | 4 | thresholding_garrote | 0.76 | 0.03 | 0.91 | 0.01 | 0.99 | 0.00 | 1.00 | 0.00 | | 5 | thresholding_hard | **0.88** | 0.05 | **0.98** | 0.00 | **1.00** | 0.00 | **1.00** | 0.00 | | 6 | pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], []) | 0.33 | 0.27 | 0.46 | 0.30 | 0.65 | 0.25 | 0.77 | 0.01 | | 7 | pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], []) | 0.15 | 0.25 | 0.14 | 0.27 | 0.04 | 0.17 | 0.00 | 0.00 | | 8 | sz_classification | 0.77 | 0.09 | 0.91 | 0.04 | 0.99 | 0.00 | 1.00 | 0.00 |