Benchmark Report [Results .csv]

Configuration

Length of signals: 8192

Repetitions: 100

SNRin values: -5, 0, 5, 10, 15, 20,

Methods

  • dt

  • ht

Signals

  • 6_male

  • 6_female

  • cello

  • trumpet

Mean results tables:

The results shown here are the average and 95% CI of the performance metric with Bonferroni correction. Best performances are bolded.

Signal: 6_male [View Plot] [Get .csv]

Method + Param

SNRin=-5dB (average)

SNRin=-5dB (CI)

SNRin=0dB (average)

SNRin=0dB (CI)

SNRin=5dB (average)

SNRin=5dB (CI)

SNRin=10dB (average)

SNRin=10dB (CI)

SNRin=15dB (average)

SNRin=15dB (CI)

SNRin=20dB (average)

SNRin=20dB (CI)

0

dt{‘scale_fun’: <function scale_fun_APF at 0x7accaf7ed870>}

1.18

[‘1.16’, ‘1.19’]

1.29

[‘1.28’, ‘1.31’]

1.47

[‘1.45’, ‘1.48’]

1.71

[‘1.69’, ‘1.73’]

2.00

[‘1.97’, ‘2.02’]

2.31

[‘2.28’, ‘2.33’]

1

dt{‘scale_fun’: <function scale_fun_Fvs at 0x7accb0468d30>}

1.17

[‘1.15’, ‘1.19’]

1.29

[‘1.27’, ‘1.32’]

1.43

[‘1.40’, ‘1.47’]

1.61

[‘1.55’, ‘1.67’]

1.82

[‘1.72’, ‘1.91’]

2.04

[‘1.93’, ‘2.16’]

2

dt{‘scale_fun’: <function scale_fun_F at 0x7accaf7ed7e0>}

1.19

[‘1.18’, ‘1.21’]

1.33

[‘1.31’, ‘1.34’]

1.50

[‘1.49’, ‘1.52’]

1.77

[‘1.75’, ‘1.79’]

2.10

[‘2.07’, ‘2.12’]

2.44

[‘2.41’, ‘2.46’]

3

dt{‘LB’: 1.0}

1.22

[‘1.20’, ‘1.23’]

1.34

[‘1.33’, ‘1.35’]

1.50

[‘1.49’, ‘1.52’]

1.75

[‘1.73’, ‘1.76’]

2.08

[‘2.06’, ‘2.11’]

2.49

[‘2.46’, ‘2.51’]

4

dt{‘LB’: 1.25}

1.22

[‘1.21’, ‘1.24’]

1.35

[‘1.34’, ‘1.36’]

1.51

[‘1.50’, ‘1.53’]

1.76

[‘1.74’, ‘1.78’]

2.10

[‘2.08’, ‘2.12’]

2.50

[‘2.47’, ‘2.52’]

5

dt{‘LB’: 1.5}

1.19

[‘1.17’, ‘1.20’]

1.31

[‘1.30’, ‘1.33’]

1.49

[‘1.48’, ‘1.51’]

1.76

[‘1.74’, ‘1.77’]

2.08

[‘2.06’, ‘2.10’]

2.39

[‘2.37’, ‘2.42’]

6

dt{‘LB’: 1.75}

1.06

[‘1.05’, ‘1.06’]

1.10

[‘1.09’, ‘1.11’]

1.20

[‘1.19’, ‘1.21’]

1.33

[‘1.31’, ‘1.35’]

1.47

[‘1.45’, ‘1.49’]

1.62

[‘1.59’, ‘1.64’]

7

dt{‘LB’: 2.0}

1.04

[‘1.03’, ‘1.06’]

1.05

[‘1.04’, ‘1.07’]

1.07

[‘1.07’, ‘1.08’]

1.11

[‘1.10’, ‘1.11’]

1.16

[‘1.15’, ‘1.17’]

1.20

[‘1.19’, ‘1.20’]

8

dt{‘LB’: 2.25}

1.06

[‘1.05’, ‘1.08’]

1.05

[‘1.05’, ‘1.06’]

1.12

[‘1.07’, ‘1.19’]

1.18

[‘1.11’, ‘1.31’]

1.25

[‘1.15’, ‘1.40’]

1.14

[‘1.12’, ‘1.17’]

9

dt{‘LB’: 2.5}

1.05

[‘1.05’, ‘1.06’]

1.05

[‘1.05’, ‘1.06’]

1.05

[‘1.05’, ‘1.06’]

1.06

[‘1.05’, ‘1.07’]

1.12

[‘1.08’, ‘1.24’]

2.16

[‘1.78’, ‘2.56’]

10

dt{‘LB’: 2.75}

1.05

[‘1.05’, ‘1.06’]

1.05

[‘1.05’, ‘1.06’]

1.05

[‘1.05’, ‘1.06’]

1.05

[‘1.05’, ‘1.06’]

1.05

[‘1.05’, ‘1.06’]

1.06

[‘1.05’, ‘1.07’]

11

dt{‘LB’: 3.0}

1.05

[‘1.05’, ‘1.06’]

1.05

[‘1.05’, ‘1.06’]

1.05

[‘1.05’, ‘1.06’]

1.05

[‘1.05’, ‘1.06’]

1.05

[‘1.05’, ‘1.06’]

1.05

[‘1.05’, ‘1.06’]

12

ht{‘coeff’: 0.5, ‘Nfft’: 4096}

1.23

[‘1.21’, ‘1.24’]

1.35

[‘1.34’, ‘1.36’]

1.51

[‘1.50’, ‘1.53’]

1.77

[‘1.75’, ‘1.79’]

2.12

[‘2.10’, ‘2.14’]

2.53

[‘2.50’, ‘2.55’]

13

ht{‘coeff’: 1.0, ‘Nfft’: 4096}

1.24

[‘1.22’, ‘1.25’]

1.37

[‘1.36’, ‘1.38’]

1.53

[‘1.52’, ‘1.55’]

1.79

[‘1.77’, ‘1.81’]

2.15

[‘2.13’, ‘2.17’]

2.58

[‘2.55’, ‘2.61’]

14

ht{‘coeff’: 1.5, ‘Nfft’: 4096}

1.23

[‘1.21’, ‘1.25’]

1.37

[‘1.35’, ‘1.38’]

1.53

[‘1.51’, ‘1.54’]

1.77

[‘1.75’, ‘1.79’]

2.09

[‘2.07’, ‘2.11’]

2.51

[‘2.49’, ‘2.54’]

15

ht{‘coeff’: 2.0, ‘Nfft’: 4096}

1.23

[‘1.21’, ‘1.25’]

1.36

[‘1.35’, ‘1.37’]

1.51

[‘1.49’, ‘1.52’]

1.72

[‘1.70’, ‘1.74’]

1.99

[‘1.97’, ‘2.01’]

2.41

[‘2.38’, ‘2.44’]

16

ht{‘coeff’: 2.5, ‘Nfft’: 4096}

1.23

[‘1.21’, ‘1.25’]

1.35

[‘1.34’, ‘1.37’]

1.50

[‘1.48’, ‘1.51’]

1.67

[‘1.66’, ‘1.69’]

1.91

[‘1.90’, ‘1.93’]

2.32

[‘2.29’, ‘2.35’]

17

ht{‘coeff’: 3.0, ‘Nfft’: 4096}

1.23

[‘1.21’, ‘1.25’]

1.36

[‘1.35’, ‘1.37’]

1.49

[‘1.48’, ‘1.51’]

1.64

[‘1.63’, ‘1.66’]

1.87

[‘1.86’, ‘1.89’]

2.28

[‘2.25’, ‘2.31’]

18

ht{‘coeff’: 3.5, ‘Nfft’: 4096}

1.23

[‘1.21’, ‘1.25’]

1.37

[‘1.35’, ‘1.38’]

1.48

[‘1.47’, ‘1.50’]

1.63

[‘1.62’, ‘1.65’]

1.85

[‘1.83’, ‘1.86’]

2.26

[‘2.23’, ‘2.30’]

19

ht{‘coeff’: 4.0, ‘Nfft’: 4096}

1.23

[‘1.21’, ‘1.25’]

1.38

[‘1.36’, ‘1.39’]

1.48

[‘1.47’, ‘1.50’]

1.64

[‘1.62’, ‘1.65’]

1.83

[‘1.82’, ‘1.85’]

2.26

[‘2.23’, ‘2.30’]

20

ht{‘coeff’: 4.5, ‘Nfft’: 4096}

1.22

[‘1.20’, ‘1.25’]

1.39

[‘1.37’, ‘1.41’]

1.49

[‘1.47’, ‘1.51’]

1.65

[‘1.63’, ‘1.66’]

1.84

[‘1.83’, ‘1.86’]

2.26

[‘2.23’, ‘2.30’]

21

ht{‘coeff’: 5.0, ‘Nfft’: 4096}

1.23

[‘1.21’, ‘1.25’]

1.40

[‘1.38’, ‘1.42’]

1.51

[‘1.49’, ‘1.53’]

1.65

[‘1.64’, ‘1.67’]

1.85

[‘1.84’, ‘1.87’]

2.25

[‘2.22’, ‘2.29’]

Signal: 6_female [View Plot] [Get .csv]

Method + Param

SNRin=-5dB (average)

SNRin=-5dB (CI)

SNRin=0dB (average)

SNRin=0dB (CI)

SNRin=5dB (average)

SNRin=5dB (CI)

SNRin=10dB (average)

SNRin=10dB (CI)

SNRin=15dB (average)

SNRin=15dB (CI)

SNRin=20dB (average)

SNRin=20dB (CI)

0

dt{‘scale_fun’: <function scale_fun_APF at 0x7accaf7ed870>}

1.16

[‘1.15’, ‘1.17’]

1.30

[‘1.29’, ‘1.32’]

1.56

[‘1.54’, ‘1.58’]

1.88

[‘1.86’, ‘1.90’]

2.25

[‘2.23’, ‘2.27’]

2.59

[‘2.57’, ‘2.61’]

1

dt{‘scale_fun’: <function scale_fun_Fvs at 0x7accb0468d30>}

1.16

[‘1.14’, ‘1.17’]

1.31

[‘1.29’, ‘1.32’]

1.54

[‘1.52’, ‘1.56’]

1.84

[‘1.82’, ‘1.86’]

2.20

[‘2.17’, ‘2.22’]

2.54

[‘2.51’, ‘2.57’]

2

dt{‘scale_fun’: <function scale_fun_F at 0x7accaf7ed7e0>}

1.17

[‘1.16’, ‘1.18’]

1.31

[‘1.30’, ‘1.33’]

1.54

[‘1.52’, ‘1.56’]

1.85

[‘1.83’, ‘1.87’]

2.20

[‘2.18’, ‘2.23’]

2.59

[‘2.57’, ‘2.61’]

3

dt{‘LB’: 1.0}

1.17

[‘1.16’, ‘1.18’]

1.27

[‘1.26’, ‘1.28’]

1.46

[‘1.44’, ‘1.47’]

1.74

[‘1.72’, ‘1.76’]

2.09

[‘2.06’, ‘2.11’]

2.49

[‘2.47’, ‘2.52’]

4

dt{‘LB’: 1.25}

1.18

[‘1.17’, ‘1.18’]

1.29

[‘1.28’, ‘1.29’]

1.48

[‘1.47’, ‘1.50’]

1.77

[‘1.75’, ‘1.79’]

2.12

[‘2.10’, ‘2.14’]

2.53

[‘2.50’, ‘2.55’]

5

dt{‘LB’: 1.5}

1.17

[‘1.16’, ‘1.18’]

1.31

[‘1.30’, ‘1.33’]

1.55

[‘1.53’, ‘1.57’]

1.86

[‘1.84’, ‘1.88’]

2.22

[‘2.20’, ‘2.24’]

2.60

[‘2.57’, ‘2.62’]

6

dt{‘LB’: 1.75}

1.06

[‘1.05’, ‘1.07’]

1.16

[‘1.14’, ‘1.17’]

1.40

[‘1.38’, ‘1.43’]

1.78

[‘1.75’, ‘1.80’]

2.11

[‘2.09’, ‘2.14’]

2.41

[‘2.38’, ‘2.43’]

7

dt{‘LB’: 2.0}

1.03

[‘1.02’, ‘1.03’]

1.04

[‘1.04’, ‘1.05’]

1.10

[‘1.09’, ‘1.11’]

1.27

[‘1.25’, ‘1.29’]

1.55

[‘1.53’, ‘1.58’]

1.79

[‘1.77’, ‘1.81’]

8

dt{‘LB’: 2.25}

1.05

[‘1.04’, ‘1.06’]

1.05

[‘1.04’, ‘1.05’]

1.07

[‘1.05’, ‘1.09’]

1.07

[‘1.06’, ‘1.08’]

1.12

[‘1.11’, ‘1.14’]

1.23

[‘1.21’, ‘1.25’]

9

dt{‘LB’: 2.5}

1.05

[‘1.05’, ‘1.05’]

1.05

[‘1.05’, ‘1.05’]

1.05

[‘1.05’, ‘1.06’]

1.07

[‘1.05’, ‘1.09’]

1.11

[‘1.08’, ‘1.15’]

1.12

[‘1.09’, ‘1.18’]

10

dt{‘LB’: 2.75}

1.05

[‘1.05’, ‘1.05’]

1.05

[‘1.05’, ‘1.05’]

1.05

[‘1.05’, ‘1.05’]

1.05

[‘1.05’, ‘1.05’]

1.05

[‘1.05’, ‘1.05’]

1.05

[‘1.05’, ‘1.05’]

11

dt{‘LB’: 3.0}

1.05

[‘1.05’, ‘1.05’]

1.05

[‘1.05’, ‘1.05’]

1.05

[‘1.05’, ‘1.05’]

1.05

[‘1.05’, ‘1.05’]

1.05

[‘1.05’, ‘1.05’]

1.05

[‘1.05’, ‘1.05’]

12

ht{‘coeff’: 0.5, ‘Nfft’: 4096}

1.17

[‘1.16’, ‘1.18’]

1.28

[‘1.27’, ‘1.29’]

1.48

[‘1.46’, ‘1.49’]

1.78

[‘1.76’, ‘1.79’]

2.15

[‘2.13’, ‘2.18’]

2.59

[‘2.57’, ‘2.62’]

13

ht{‘coeff’: 1.0, ‘Nfft’: 4096}

1.19

[‘1.18’, ‘1.20’]

1.31

[‘1.30’, ‘1.32’]

1.52

[‘1.51’, ‘1.53’]

1.84

[‘1.82’, ‘1.85’]

2.23

[‘2.20’, ‘2.25’]

2.66

[‘2.63’, ‘2.68’]

14

ht{‘coeff’: 1.5, ‘Nfft’: 4096}

1.20

[‘1.19’, ‘1.21’]

1.33

[‘1.32’, ‘1.34’]

1.54

[‘1.52’, ‘1.55’]

1.83

[‘1.82’, ‘1.85’]

2.17

[‘2.15’, ‘2.19’]

2.57

[‘2.55’, ‘2.59’]

15

ht{‘coeff’: 2.0, ‘Nfft’: 4096}

1.21

[‘1.19’, ‘1.22’]

1.33

[‘1.32’, ‘1.34’]

1.52

[‘1.51’, ‘1.54’]

1.80

[‘1.78’, ‘1.81’]

2.08

[‘2.06’, ‘2.10’]

2.44

[‘2.41’, ‘2.46’]

16

ht{‘coeff’: 2.5, ‘Nfft’: 4096}

1.20

[‘1.19’, ‘1.21’]

1.32

[‘1.31’, ‘1.33’]

1.50

[‘1.49’, ‘1.51’]

1.75

[‘1.73’, ‘1.76’]

2.02

[‘2.01’, ‘2.04’]

2.35

[‘2.33’, ‘2.38’]

17

ht{‘coeff’: 3.0, ‘Nfft’: 4096}

1.20

[‘1.19’, ‘1.21’]

1.31

[‘1.30’, ‘1.32’]

1.47

[‘1.46’, ‘1.49’]

1.70

[‘1.68’, ‘1.71’]

1.99

[‘1.97’, ‘2.00’]

2.32

[‘2.30’, ‘2.34’]

18

ht{‘coeff’: 3.5, ‘Nfft’: 4096}

1.20

[‘1.18’, ‘1.21’]

1.31

[‘1.30’, ‘1.32’]

1.45

[‘1.44’, ‘1.46’]

1.66

[‘1.65’, ‘1.67’]

1.94

[‘1.93’, ‘1.96’]

2.32

[‘2.29’, ‘2.34’]

19

ht{‘coeff’: 4.0, ‘Nfft’: 4096}

1.19

[‘1.18’, ‘1.20’]

1.31

[‘1.30’, ‘1.32’]

1.44

[‘1.42’, ‘1.45’]

1.63

[‘1.62’, ‘1.64’]

1.90

[‘1.89’, ‘1.92’]

2.32

[‘2.29’, ‘2.35’]

20

ht{‘coeff’: 4.5, ‘Nfft’: 4096}

1.19

[‘1.18’, ‘1.21’]

1.31

[‘1.30’, ‘1.32’]

1.42

[‘1.41’, ‘1.43’]

1.61

[‘1.59’, ‘1.62’]

1.87

[‘1.85’, ‘1.88’]

2.30

[‘2.27’, ‘2.33’]

21

ht{‘coeff’: 5.0, ‘Nfft’: 4096}

1.19

[‘1.18’, ‘1.21’]

1.31

[‘1.30’, ‘1.32’]

1.41

[‘1.40’, ‘1.42’]

1.59

[‘1.57’, ‘1.60’]

1.85

[‘1.83’, ‘1.86’]

2.26

[‘2.23’, ‘2.30’]

Signal: cello [View Plot] [Get .csv]

Method + Param

SNRin=-5dB (average)

SNRin=-5dB (CI)

SNRin=0dB (average)

SNRin=0dB (CI)

SNRin=5dB (average)

SNRin=5dB (CI)

SNRin=10dB (average)

SNRin=10dB (CI)

SNRin=15dB (average)

SNRin=15dB (CI)

SNRin=20dB (average)

SNRin=20dB (CI)

0

dt{‘scale_fun’: <function scale_fun_APF at 0x7accaf7ed870>}

1.28

[‘1.27’, ‘1.29’]

1.39

[‘1.38’, ‘1.40’]

1.60

[‘1.59’, ‘1.62’]

1.91

[‘1.89’, ‘1.93’]

2.35

[‘2.32’, ‘2.38’]

2.90

[‘2.86’, ‘2.93’]

1

dt{‘scale_fun’: <function scale_fun_Fvs at 0x7accb0468d30>}

1.25

[‘1.23’, ‘1.28’]

1.35

[‘1.32’, ‘1.37’]

1.55

[‘1.53’, ‘1.58’]

1.87

[‘1.84’, ‘1.89’]

2.29

[‘2.26’, ‘2.32’]

2.79

[‘2.75’, ‘2.84’]

2

dt{‘scale_fun’: <function scale_fun_F at 0x7accaf7ed7e0>}

1.32

[‘1.30’, ‘1.33’]

1.44

[‘1.43’, ‘1.44’]

1.64

[‘1.63’, ‘1.66’]

1.94

[‘1.92’, ‘1.95’]

2.33

[‘2.30’, ‘2.35’]

2.86

[‘2.83’, ‘2.90’]

3

dt{‘LB’: 1.0}

1.37

[‘1.36’, ‘1.39’]

1.46

[‘1.45’, ‘1.47’]

1.65

[‘1.64’, ‘1.66’]

1.93

[‘1.91’, ‘1.94’]

2.28

[‘2.27’, ‘2.30’]

2.80

[‘2.77’, ‘2.82’]

4

dt{‘LB’: 1.25}

1.36

[‘1.34’, ‘1.37’]

1.46

[‘1.44’, ‘1.47’]

1.65

[‘1.64’, ‘1.66’]

1.93

[‘1.91’, ‘1.94’]

2.30

[‘2.28’, ‘2.32’]

2.82

[‘2.79’, ‘2.85’]

5

dt{‘LB’: 1.5}

1.31

[‘1.30’, ‘1.32’]

1.43

[‘1.42’, ‘1.44’]

1.64

[‘1.62’, ‘1.65’]

1.93

[‘1.91’, ‘1.95’]

2.33

[‘2.30’, ‘2.35’]

2.87

[‘2.84’, ‘2.91’]

6

dt{‘LB’: 1.75}

1.14

[‘1.14’, ‘1.15’]

1.26

[‘1.25’, ‘1.27’]

1.49

[‘1.47’, ‘1.51’]

1.83

[‘1.80’, ‘1.86’]

2.26

[‘2.23’, ‘2.30’]

2.76

[‘2.72’, ‘2.81’]

7

dt{‘LB’: 2.0}

1.07

[‘1.07’, ‘1.08’]

1.17

[‘1.16’, ‘1.18’]

1.34

[‘1.32’, ‘1.36’]

1.59

[‘1.56’, ‘1.63’]

1.88

[‘1.83’, ‘1.92’]

2.12

[‘2.08’, ‘2.16’]

8

dt{‘LB’: 2.25}

1.02

[‘1.02’, ‘1.02’]

1.03

[‘1.03’, ‘1.03’]

1.05

[‘1.05’, ‘1.05’]

1.09

[‘1.08’, ‘1.10’]

1.17

[‘1.16’, ‘1.18’]

1.27

[‘1.26’, ‘1.29’]

9

dt{‘LB’: 2.5}

1.04

[‘1.03’, ‘1.05’]

1.03

[‘1.02’, ‘1.03’]

1.02

[‘1.02’, ‘1.02’]

1.02

[‘1.02’, ‘1.03’]

1.02

[‘1.02’, ‘1.02’]

1.03

[‘1.02’, ‘1.03’]

10

dt{‘LB’: 2.75}

1.04

[‘1.04’, ‘1.05’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

11

dt{‘LB’: 3.0}

1.04

[‘1.04’, ‘1.05’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

12

ht{‘coeff’: 0.5, ‘Nfft’: 4096}

1.37

[‘1.35’, ‘1.38’]

1.46

[‘1.45’, ‘1.46’]

1.64

[‘1.63’, ‘1.66’]

1.93

[‘1.91’, ‘1.94’]

2.30

[‘2.28’, ‘2.32’]

2.83

[‘2.80’, ‘2.86’]

13

ht{‘coeff’: 1.0, ‘Nfft’: 4096}

1.33

[‘1.32’, ‘1.35’]

1.43

[‘1.42’, ‘1.44’]

1.62

[‘1.61’, ‘1.63’]

1.92

[‘1.90’, ‘1.93’]

2.31

[‘2.29’, ‘2.33’]

2.86

[‘2.83’, ‘2.90’]

14

ht{‘coeff’: 1.5, ‘Nfft’: 4096}

1.31

[‘1.29’, ‘1.32’]

1.41

[‘1.40’, ‘1.42’]

1.61

[‘1.60’, ‘1.63’]

1.93

[‘1.91’, ‘1.95’]

2.36

[‘2.33’, ‘2.38’]

2.94

[‘2.90’, ‘2.97’]

15

ht{‘coeff’: 2.0, ‘Nfft’: 4096}

1.29

[‘1.27’, ‘1.30’]

1.40

[‘1.39’, ‘1.41’]

1.62

[‘1.60’, ‘1.63’]

1.96

[‘1.93’, ‘1.98’]

2.42

[‘2.39’, ‘2.45’]

3.02

[‘2.98’, ‘3.06’]

16

ht{‘coeff’: 2.5, ‘Nfft’: 4096}

1.28

[‘1.27’, ‘1.29’]

1.40

[‘1.39’, ‘1.42’]

1.64

[‘1.62’, ‘1.65’]

2.00

[‘1.97’, ‘2.02’]

2.48

[‘2.45’, ‘2.52’]

3.11

[‘3.06’, ‘3.15’]

17

ht{‘coeff’: 3.0, ‘Nfft’: 4096}

1.27

[‘1.26’, ‘1.28’]

1.41

[‘1.40’, ‘1.42’]

1.66

[‘1.64’, ‘1.68’]

2.04

[‘2.01’, ‘2.07’]

2.55

[‘2.51’, ‘2.58’]

3.19

[‘3.14’, ‘3.23’]

18

ht{‘coeff’: 3.5, ‘Nfft’: 4096}

1.24

[‘1.23’, ‘1.25’]

1.42

[‘1.41’, ‘1.44’]

1.69

[‘1.67’, ‘1.72’]

2.08

[‘2.05’, ‘2.11’]

2.61

[‘2.57’, ‘2.65’]

3.27

[‘3.22’, ‘3.32’]

19

ht{‘coeff’: 4.0, ‘Nfft’: 4096}

1.20

[‘1.19’, ‘1.22’]

1.43

[‘1.41’, ‘1.44’]

1.72

[‘1.69’, ‘1.75’]

2.12

[‘2.08’, ‘2.15’]

2.67

[‘2.63’, ‘2.71’]

3.35

[‘3.30’, ‘3.41’]

20

ht{‘coeff’: 4.5, ‘Nfft’: 4096}

1.16

[‘1.15’, ‘1.18’]

1.42

[‘1.40’, ‘1.44’]

1.74

[‘1.72’, ‘1.77’]

2.16

[‘2.12’, ‘2.19’]

2.74

[‘2.69’, ‘2.79’]

3.44

[‘3.38’, ‘3.50’]

21

ht{‘coeff’: 5.0, ‘Nfft’: 4096}

1.13

[‘1.12’, ‘1.14’]

1.39

[‘1.37’, ‘1.41’]

1.76

[‘1.74’, ‘1.79’]

2.20

[‘2.17’, ‘2.24’]

2.82

[‘2.77’, ‘2.87’]

3.53

[‘3.47’, ‘3.59’]

Signal: trumpet [View Plot] [Get .csv]

Method + Param

SNRin=-5dB (average)

SNRin=-5dB (CI)

SNRin=0dB (average)

SNRin=0dB (CI)

SNRin=5dB (average)

SNRin=5dB (CI)

SNRin=10dB (average)

SNRin=10dB (CI)

SNRin=15dB (average)

SNRin=15dB (CI)

SNRin=20dB (average)

SNRin=20dB (CI)

0

dt{‘scale_fun’: <function scale_fun_APF at 0x7accaf7ed870>}

1.09

[‘1.09’, ‘1.09’]

1.20

[‘1.19’, ‘1.20’]

1.41

[‘1.40’, ‘1.43’]

1.75

[‘1.73’, ‘1.76’]

2.18

[‘2.15’, ‘2.20’]

2.71

[‘2.68’, ‘2.74’]

1

dt{‘scale_fun’: <function scale_fun_Fvs at 0x7accb0468d30>}

1.08

[‘1.08’, ‘1.09’]

1.19

[‘1.18’, ‘1.20’]

1.42

[‘1.40’, ‘1.44’]

1.77

[‘1.74’, ‘1.79’]

2.21

[‘2.18’, ‘2.25’]

2.70

[‘2.66’, ‘2.74’]

2

dt{‘scale_fun’: <function scale_fun_F at 0x7accaf7ed7e0>}

1.08

[‘1.08’, ‘1.09’]

1.18

[‘1.17’, ‘1.18’]

1.37

[‘1.36’, ‘1.38’]

1.68

[‘1.66’, ‘1.69’]

2.08

[‘2.07’, ‘2.10’]

2.61

[‘2.58’, ‘2.63’]

3

dt{‘LB’: 1.0}

1.07

[‘1.06’, ‘1.07’]

1.13

[‘1.13’, ‘1.14’]

1.28

[‘1.27’, ‘1.29’]

1.54

[‘1.53’, ‘1.55’]

1.90

[‘1.89’, ‘1.92’]

2.35

[‘2.33’, ‘2.37’]

4

dt{‘LB’: 1.25}

1.07

[‘1.07’, ‘1.07’]

1.14

[‘1.14’, ‘1.15’]

1.30

[‘1.29’, ‘1.31’]

1.58

[‘1.57’, ‘1.59’]

1.95

[‘1.93’, ‘1.96’]

2.42

[‘2.40’, ‘2.44’]

5

dt{‘LB’: 1.5}

1.09

[‘1.08’, ‘1.09’]

1.18

[‘1.18’, ‘1.19’]

1.38

[‘1.37’, ‘1.39’]

1.69

[‘1.68’, ‘1.71’]

2.10

[‘2.08’, ‘2.12’]

2.63

[‘2.61’, ‘2.66’]

6

dt{‘LB’: 1.75}

1.08

[‘1.08’, ‘1.09’]

1.21

[‘1.20’, ‘1.22’]

1.44

[‘1.42’, ‘1.46’]

1.77

[‘1.75’, ‘1.80’]

2.22

[‘2.19’, ‘2.26’]

2.70

[‘2.65’, ‘2.74’]

7

dt{‘LB’: 2.0}

1.04

[‘1.04’, ‘1.05’]

1.13

[‘1.12’, ‘1.14’]

1.29

[‘1.27’, ‘1.31’]

1.51

[‘1.49’, ‘1.54’]

1.73

[‘1.70’, ‘1.77’]

2.03

[‘1.99’, ‘2.07’]

8

dt{‘LB’: 2.25}

1.03

[‘1.03’, ‘1.04’]

1.03

[‘1.03’, ‘1.03’]

1.04

[‘1.04’, ‘1.04’]

1.06

[‘1.06’, ‘1.06’]

1.09

[‘1.08’, ‘1.09’]

1.10

[‘1.10’, ‘1.11’]

9

dt{‘LB’: 2.5}

1.03

[‘1.03’, ‘1.04’]

1.03

[‘1.03’, ‘1.04’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.04’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

10

dt{‘LB’: 2.75}

1.04

[‘1.03’, ‘1.04’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

11

dt{‘LB’: 3.0}

1.04

[‘1.03’, ‘1.04’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

1.03

[‘1.03’, ‘1.03’]

12

ht{‘coeff’: 0.5, ‘Nfft’: 4096}

1.07

[‘1.07’, ‘1.07’]

1.14

[‘1.13’, ‘1.14’]

1.29

[‘1.28’, ‘1.29’]

1.56

[‘1.54’, ‘1.57’]

1.93

[‘1.91’, ‘1.94’]

2.41

[‘2.39’, ‘2.43’]

13

ht{‘coeff’: 1.0, ‘Nfft’: 4096}

1.07

[‘1.07’, ‘1.08’]

1.14

[‘1.14’, ‘1.15’]

1.30

[‘1.29’, ‘1.31’]

1.58

[‘1.57’, ‘1.60’]

1.97

[‘1.95’, ‘1.99’]

2.50

[‘2.48’, ‘2.53’]

14

ht{‘coeff’: 1.5, ‘Nfft’: 4096}

1.08

[‘1.07’, ‘1.08’]

1.15

[‘1.15’, ‘1.16’]

1.31

[‘1.30’, ‘1.32’]

1.59

[‘1.58’, ‘1.60’]

1.98

[‘1.96’, ‘2.00’]

2.57

[‘2.55’, ‘2.60’]

15

ht{‘coeff’: 2.0, ‘Nfft’: 4096}

1.08

[‘1.08’, ‘1.08’]

1.15

[‘1.15’, ‘1.16’]

1.32

[‘1.31’, ‘1.32’]

1.59

[‘1.58’, ‘1.60’]

1.99

[‘1.97’, ‘2.01’]

2.66

[‘2.63’, ‘2.69’]

16

ht{‘coeff’: 2.5, ‘Nfft’: 4096}

1.08

[‘1.08’, ‘1.08’]

1.15

[‘1.14’, ‘1.15’]

1.31

[‘1.31’, ‘1.32’]

1.59

[‘1.58’, ‘1.61’]

2.02

[‘2.00’, ‘2.04’]

2.78

[‘2.74’, ‘2.82’]

17

ht{‘coeff’: 3.0, ‘Nfft’: 4096}

1.08

[‘1.07’, ‘1.08’]

1.14

[‘1.14’, ‘1.15’]

1.31

[‘1.30’, ‘1.32’]

1.59

[‘1.58’, ‘1.60’]

2.10

[‘2.08’, ‘2.12’]

2.89

[‘2.84’, ‘2.94’]

18

ht{‘coeff’: 3.5, ‘Nfft’: 4096}

1.08

[‘1.07’, ‘1.08’]

1.14

[‘1.14’, ‘1.15’]

1.29

[‘1.28’, ‘1.30’]

1.59

[‘1.58’, ‘1.60’]

2.12

[‘2.10’, ‘2.15’]

3.05

[‘3.01’, ‘3.10’]

19

ht{‘coeff’: 4.0, ‘Nfft’: 4096}

1.07

[‘1.07’, ‘1.08’]

1.14

[‘1.14’, ‘1.15’]

1.28

[‘1.27’, ‘1.28’]

1.60

[‘1.59’, ‘1.61’]

2.15

[‘2.12’, ‘2.18’]

3.07

[‘3.03’, ‘3.12’]

20

ht{‘coeff’: 4.5, ‘Nfft’: 4096}

1.07

[‘1.07’, ‘1.07’]

1.14

[‘1.13’, ‘1.14’]

1.28

[‘1.27’, ‘1.29’]

1.57

[‘1.56’, ‘1.58’]

2.19

[‘2.15’, ‘2.23’]

3.10

[‘3.06’, ‘3.14’]

21

ht{‘coeff’: 5.0, ‘Nfft’: 4096}

1.06

[‘1.06’, ‘1.07’]

1.14

[‘1.13’, ‘1.14’]

1.28

[‘1.28’, ‘1.29’]

1.54

[‘1.53’, ‘1.56’]

2.25

[‘2.21’, ‘2.30’]

2.99

[‘2.95’, ‘3.04’]