# Benchmark Report [[Results .csv]](https://jmiramont.github.io/ssp-2025/results/b4/results.csv) ## Configuration Length of signals: 256 Repetitions: 2000 SNRin values: -5, 0, 5, 10, ### Methods * monte_carlo_test * global_mad_test * global_rank_env_test * APF ### Signals * LinearChirp ## Mean results tables: The results shown here are the average and 95\% Clopper-Pearson CI of the estimated detection power with Bonferroni correction. Best performances are **bolded**. ### Signal: LinearChirp [[View Plot]](https://jmiramont.github.io/ssp-2025/results/b4/plot_LinearChirp.html) [[Get .csv]](https://jmiramont.github.io/ssp-2025/results/b4/results_LinearChirp.csv) | | Method + Param | SNRin=-5dB (average) | SNRin=-5dB (CI) | SNRin=0dB (average) | SNRin=0dB (CI) | SNRin=5dB (average) | SNRin=5dB (CI) | SNRin=10dB (average) | SNRin=10dB (CI) | |---:|:------------------------------------------------------------------------------------------------------------------|:-----------------------|:------------------|:----------------------|:-----------------|:----------------------|:-----------------|:-----------------------|:------------------| | 0 | monte_carlo_test{'statistic': 'Frs', 'pnorm': 2, 'rmax': 0.5, 'MC_reps': 2499} | 0.05 | ['0.03', '0.06'] | 0.07 | ['0.06', '0.09'] | 0.14 | ['0.12', '0.17'] | 0.29 | ['0.26', '0.32'] | | 1 | monte_carlo_test{'statistic': 'Frs_vs', 'pnorm': 2, 'rmax': 0.5, 'MC_reps': 2499} | 0.04 | ['0.03', '0.06'] | 0.07 | ['0.05', '0.09'] | 0.14 | ['0.12', '0.16'] | 0.28 | ['0.25', '0.31'] | | 2 | monte_carlo_test{'statistic': 'Frs', 'pnorm': 2, 'rmax': 1.0, 'MC_reps': 2499} | 0.06 | ['0.04', '0.07'] | 0.17 | ['0.14', '0.19'] | 0.65 | ['0.61', '0.68'] | 1.00 | ['1.00', '1.00'] | | 3 | monte_carlo_test{'statistic': 'Frs_vs', 'pnorm': 2, 'rmax': 1.0, 'MC_reps': 2499} | 0.07 | ['0.06', '0.09'] | 0.27 | ['0.24', '0.30'] | 0.94 | ['0.92', '0.95'] | **1.00** | ['1.00', '1.00'] | | 4 | monte_carlo_test{'statistic': 'Frs', 'pnorm': 2, 'rmax': 2.0, 'MC_reps': 2499} | 0.06 | ['0.05', '0.08'] | 0.17 | ['0.15', '0.20'] | 0.65 | ['0.62', '0.68'] | 1.00 | ['1.00', '1.00'] | | 5 | monte_carlo_test{'statistic': 'Frs_vs', 'pnorm': 2, 'rmax': 2.0, 'MC_reps': 2499} | 0.07 | ['0.06', '0.09'] | 0.27 | ['0.25', '0.30'] | 0.94 | ['0.92', '0.95'] | 1.00 | ['1.00', '1.00'] | | 6 | global_mad_test{'statistic': 'Frs', 'MC_reps': 2499} | 0.06 | ['0.04', '0.07'] | 0.16 | ['0.14', '0.18'] | 0.65 | ['0.61', '0.68'] | 1.00 | ['1.00', '1.00'] | | 7 | global_mad_test{'statistic': 'Frs_vs', 'MC_reps': 2499} | 0.07 | ['0.05', '0.08'] | 0.27 | ['0.24', '0.30'] | 0.96 | ['0.95', '0.97'] | 1.00 | ['1.00', '1.00'] | | 8 | global_rank_env_test{'fun': 'Fest', 'correction': 'rs'} | 0.07 | ['0.05', '0.08'] | 0.20 | ['0.17', '0.22'] | 0.91 | ['0.89', '0.93'] | 1.00 | ['1.00', '1.00'] | | 9 | global_rank_env_test{'fun': 'Fest', 'correction': 'rs', 'rmin': 0.65, 'rmax': 1.05} | **0.09** | ['0.07', '0.11'] | **0.34** | ['0.31', '0.37'] | **0.97** | ['0.96', '0.98'] | 1.00 | ['1.00', '1.00'] | | 10 | global_rank_env_test{'fun': 'Fest', 'correction': 'rs', 'transform': 'asin(sqrt(.))'} | 0.06 | ['0.05', '0.08'] | 0.20 | ['0.18', '0.23'] | 0.91 | ['0.88', '0.92'] | 1.00 | ['1.00', '1.00'] | | 11 | global_rank_env_test{'fun': 'Fest', 'correction': 'rs', 'rmin': 0.65, 'rmax': 1.05, 'transform': 'asin(sqrt(.))'} | 0.09 | ['0.07', '0.11'] | 0.34 | ['0.31', '0.37'] | 0.97 | ['0.96', '0.98'] | 1.00 | ['1.00', '1.00'] | | 12 | APF | 0.07 | ['0.06', '0.09'] | 0.19 | ['0.16', '0.21'] | 0.48 | ['0.45', '0.52'] | 0.73 | ['0.70', '0.76'] |