Benchmark Report

Configuration

Length of signals: 1024

Repetitions: 100

SNRin values: -5, 0, 10, 20,

Methods

  • contour_filtering

  • delaunay_triangulation

  • empty_space

  • thresholding_garrote

  • thresholding_hard

  • sz_classification

  • pseudo_bayesian_method

  • sstrd_method

Signals

  • McMultiLinear

  • McMultiLinear2

  • McSyntheticMixture

  • McSyntheticMixture2

  • McSyntheticMixture3

  • McSyntheticMixture4

  • HermiteFunction

Mean results tables:

Results shown here are the mean and standard deviation of the performance metric. Best performances are bolded.

Signal: McMultiLinear[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

contour_filtering

-0.51

0.22

1.60

0.40

13.09

0.19

22.32

0.18

1

delaunay_triangulation

-1.52

0.78

2.13

0.54

14.19

0.51

24.30

0.29

2

empty_space

-2.01

0.77

1.97

0.67

13.94

0.56

24.05

0.30

3

thresholding_garrote

0.45

0.34

5.62

0.39

15.70

0.34

25.12

0.29

4

thresholding_hard

0.11

0.08

1.18

0.27

15.67

0.39

25.64

0.33

5

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

-2.47

0.33

3.49

0.71

13.90

1.14

24.04

1.11

6

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

-2.86

0.22

3.27

0.40

14.29

0.26

24.41

0.24

7

sz_classification

-0.46

1.14

4.33

1.04

13.37

0.97

22.49

0.33

8

sstrd_method

-3.46

0.23

1.57

0.28

11.65

0.12

21.62

0.12

Signal: McMultiLinear2[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

contour_filtering

-0.62

0.27

0.62

0.16

2.47

0.21

3.18

0.17

1

delaunay_triangulation

-1.85

0.75

1.29

0.32

7.38

0.62

6.59

0.12

2

empty_space

-2.38

0.68

1.14

0.36

7.81

0.62

6.90

0.12

3

thresholding_garrote

0.14

0.30

4.79

0.29

14.89

0.26

24.37

0.25

4

thresholding_hard

0.05

0.05

0.51

0.16

13.97

0.34

24.45

0.29

5

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

-3.29

0.21

2.32

0.54

12.75

1.82

23.50

0.91

6

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

-3.68

0.14

1.71

0.28

13.46

0.25

23.71

0.21

7

sz_classification

-0.58

0.85

3.64

0.40

13.85

0.48

23.57

1.01

8

sstrd_method

-3.77

0.28

1.60

0.45

12.96

0.24

22.99

0.20

Signal: McSyntheticMixture[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

contour_filtering

-0.14

0.27

2.10

0.59

9.22

0.92

11.27

1.24

1

delaunay_triangulation

-1.64

0.74

1.57

0.40

9.33

1.01

10.30

0.89

2

empty_space

-2.12

0.74

1.63

0.51

10.10

0.73

11.37

0.66

3

thresholding_garrote

0.49

0.34

5.49

0.38

15.51

0.36

24.89

0.31

4

thresholding_hard

0.16

0.11

1.59

0.33

15.48

0.35

25.14

0.32

5

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

-1.62

0.37

3.36

0.79

12.66

1.93

19.19

1.96

6

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

-1.87

0.28

4.09

0.40

14.46

0.37

21.09

0.42

7

sz_classification

-0.27

0.99

4.26

0.65

15.22

0.39

24.26

0.48

8

sstrd_method

-2.64

0.33

2.15

0.51

10.48

2.05

20.42

3.82

Signal: McSyntheticMixture2[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

contour_filtering

1.31

0.61

6.37

0.66

15.56

0.34

24.55

0.30

1

delaunay_triangulation

-1.11

0.85

3.29

0.77

14.83

0.54

24.60

0.56

2

empty_space

-1.67

0.95

3.17

1.10

14.64

0.43

24.83

0.49

3

thresholding_garrote

1.38

0.39

6.47

0.40

16.33

0.35

25.94

0.30

4

thresholding_hard

1.12

0.41

6.29

0.64

16.96

0.51

26.15

0.34

5

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

-1.83

0.37

3.19

0.60

12.51

1.93

20.02

3.30

6

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

-2.30

0.19

3.14

0.22

13.58

0.27

23.10

0.53

7

sz_classification

0.91

1.91

5.32

1.55

14.63

0.67

23.96

0.68

8

sstrd_method

-3.15

0.23

1.95

0.25

12.15

0.32

22.78

0.59

Signal: McSyntheticMixture3[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

contour_filtering

1.60

0.72

6.93

0.97

16.99

0.48

26.15

0.51

1

delaunay_triangulation

-1.22

0.93

3.50

0.93

15.26

0.51

24.93

0.48

2

empty_space

-1.80

0.89

3.34

1.23

14.89

0.51

25.17

0.53

3

thresholding_garrote

1.43

0.46

6.56

0.43

16.49

0.42

26.19

0.38

4

thresholding_hard

1.24

0.44

6.59

0.72

17.80

0.46

27.00

0.40

5

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

-1.73

0.30

3.42

0.47

12.73

0.76

18.60

2.14

6

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

-2.37

0.21

3.05

0.22

13.39

0.29

20.81

0.70

7

sz_classification

0.92

1.83

5.34

1.84

15.06

1.04

24.60

0.57

8

sstrd_method

-3.22

0.26

1.77

0.37

11.37

1.28

19.67

3.19

Signal: McSyntheticMixture4[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

contour_filtering

-0.70

0.38

3.48

0.39

13.21

0.24

22.79

0.26

1

delaunay_triangulation

-1.36

0.80

2.40

0.47

13.59

0.48

23.57

0.26

2

empty_space

-1.87

0.84

2.23

0.65

13.66

0.45

23.52

0.26

3

thresholding_garrote

0.58

0.31

5.45

0.33

15.44

0.31

24.62

0.26

4

thresholding_hard

0.21

0.14

1.81

0.35

13.77

0.43

24.52

0.28

5

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

-4.50

0.11

0.85

0.19

10.45

0.88

17.99

3.41

6

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

-4.81

0.07

0.33

0.07

10.66

0.09

21.05

0.16

7

sz_classification

-0.30

1.22

3.82

0.82

13.25

0.57

22.82

0.37

8

sstrd_method

-4.81

0.09

0.15

0.10

10.22

0.10

20.84

0.29

Signal: HermiteFunction[View Plot] [Get .csv]

Method + Param

SNRin=-5dB (mean)

SNRin=-5dB (std)

SNRin=0dB (mean)

SNRin=0dB (std)

SNRin=10dB (mean)

SNRin=10dB (std)

SNRin=20dB (mean)

SNRin=20dB (std)

0

contour_filtering

2.42

0.68

3.63

0.61

4.49

0.22

4.55

0.11

1

delaunay_triangulation

-0.59

1.11

5.28

1.52

19.20

1.25

30.40

1.01

2

empty_space

-1.28

1.19

4.99

1.71

18.07

1.40

29.83

1.26

3

thresholding_garrote

2.03

0.53

7.09

0.53

17.15

0.52

27.17

0.52

4

thresholding_hard

5.96

1.49

14.14

0.93

23.41

0.79

32.47

0.73

5

pseudo_bayesian_method([], [], [], 0.4, 0.4, [], [], [], [], [])

0.11

1.12

1.64

1.42

3.13

1.37

3.94

0.20

6

pseudo_bayesian_method([], [], [], 0.4, 0.2, [], [], [], [], [])

-0.59

0.91

0.22

1.19

0.16

0.87

-0.00

0.00

7

sz_classification

2.08

2.76

6.74

2.36

17.12

1.91

27.35

1.71

8

sstrd_method

1.03

0.58

2.86

0.64

3.51

0.54

3.31

0.40